

MODULYS GP

25 a 200 kW

El SAI modular redundante

OBJETIVOS

El objetivo de estas especificaciones técnicas es ofrecer toda la información necesaria para preparar el sistema y el lugar de instalación.

Las especificaciones están dirigidas a:

- Instaladores
- Proyectistas
- Estudios técnicos

Para obtener información detallada, consulte el manual de instalación y funcionamiento.

1. ARQUITECTURA

1.1 GAMA Y FLEXIBILIDAD

Modulys GP es un sistema SAI modular, escalable y redundante basado en módulos de potencia enchufables e intercambiables en caliente.

La modularidad permite escalar la potencia simplemente conectando uno o más módulos adicionales al sistema existente (hasta 8 módulos por sistema).

La modularidad también permite la redundancia, que es una característica esencial para garantizar la tolerancia a fallos del sistema SAI.

La configuración redundante puede establecerse desde N+0 hasta N+R. Se recomienda encarecidamente utilizar N+1 para aprovechar todas las grandes ventajas de la redundancia.

1.1.1 POTENCIA NOMINAL FLEXIBLE

MÓDULOS DE POTENCIA										
Número de módulos de potencia	1	2	3	4	5	6	7	8	3	
Sistema redundante N+1 Potencia (kW)	25 + O ⁽¹⁾	25 + 25	50 + 25	75 + 25	100 + 25	125 + 25	150 + 25	175 + 25	200 + 0(1)	

⁽¹⁾ Sin redundancia de la potencia

1.1.2 CABLEADO FLEXIBLE

La solución de serie tiene una configuración de cableado inferior.

Opcionalmente, también admiten cableado superior y cableado mixto superior e inferior.

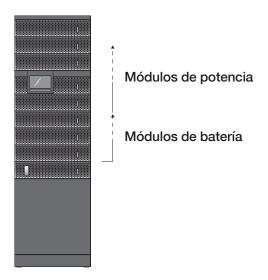
1.1.3 COMPATIBILIDAD DE PUESTA A TIERRA FLEXIBLE

Compatible con cualquier sistema de puesta a tierra: TN-S, TN-C, TT, IT.

1.2 TIEMPO DE AUTONOMÍA FLEXIBLE

Se dispone de varios tiempos de autonomía ampliados usando: (1) la batería interna; (2) un armario para baterías modular; (3) un armario de baterías de alta capacidad. Los dos últimos ocupan un espacio mínimo.

Cada pack de baterías consta de un contenedor a prueba de ácido diseñado para evitar problemas en caso de fugas.

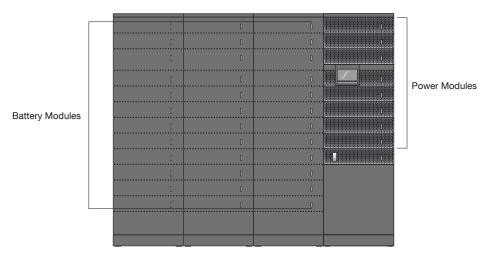

Cada módulo de potencia dispone de un potente cargador de baterías integrado que puede suministrar hasta 8 A (sin desclasificación).

Se dispone de un módulo de potencia especial con cargador de baterías doble integrado cuando se precisan tiempos de autonomía muy prolongados.

1.2.1 BATERÍAS INTERNAS INTERCAMBIABLES EN CALIENTE

Un armario del SAI estándar puede alojar tanto módulos de potencia como cajas de baterías, proporcionando así una solución compacta con un tamaño reducido y costes optimizados.

Cada caja de baterías dispone de protección independiente y es intercambiable en caliente.


	ARMARIO DE BATERÍAS INTERNAS INTERCAMBIABLES EN CALIENTE TIEMPOS DE AUTONOMÍA EN MINUTOS AL 75 % DE LA CARGA NOMINAL											
Número cia	Número de módulos de poten cia		1	2	3	4	5	6	7	3	3	
	Sistema redundante N+1 Potencia (kW)		-1	25 + 0(1)	25 + 25	50 + 25	75 + 25	100 + 25	125 + 25	150 + 25	175 + 25	200 + 0(1)
	1		5	/	/	/	/	/	/	/	/	/
<u>.0</u>	2		10	6	6	/	/	/	/	/	/	/
S Ser	3	acumulado	15	11	11	/	/	/	/	/	/	/
0 de	4	Sum	20	16	16	6	/	/	/	/	/	/
Vúmero de serie	5	Ah ac	25	21	21	8	/	/	/	/	/	/
Ž	6		30	26	26	/	/	/	/	/	/	/
	7		35	34	34	/	/	/	/	/	/	/

(1) Sin redundancia de la potencia

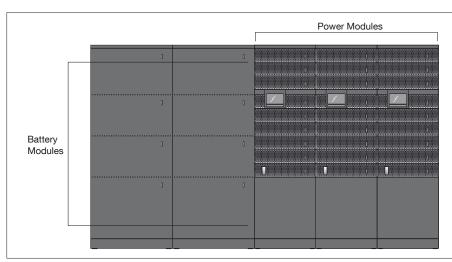
1.2.2 ARMARIO PARA BATERÍAS INTERCAMBIABLES EN CALIENTE - MEDIA CAPACIDAD

El sistema de baterías modular se basa en modularidad vertical y horizontal gracias a las series de baterías independientes conectadas en paralelo, cada una formada por packs de baterías de larga duración intercambiables en caliente. Cada serie de baterías dispone de protección y conmutador independientes propios para un mantenimiento rápido seguro.

DIMEN	SIONES Y PESO									
	Número de armarios para baterías intercambiables en caliente - media capacidad									
	1 2	3								
	Número de series de baterías									
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36									
Alto (mm)	1990									
Fondo (mm)	950									
Ancho (mm)	810 1620 2430									
Peso (kg)	184 508 632 756 880 1004 1128 1252 1376 1500 1624 1748 2132 2256 2380 2504 2628 2752 2876 3000 3124 3248 3372 348	06388040044128425243764500462447484872499651205244								

La modularidad vertical utilizando un armario de baterías modular con cajas de baterías intercambiables en caliente proporciona autonomía de energía escalable con hasta 12 series de baterías por armario.

La modularidad horizontal proporciona una autonomía muy elevada y escalable.


Un sensor de temperatura de serie optimiza los parámetros de recarga de baterías según la temperatura ambiente de funcionamiento para ampliar la vida útil de la batería.

	nero de						2	3	4	ARGA NO	6	7		 8
	ntación						25 + 25	50 + 25	75 + 25	100 + 25		150 + 25		1
N+1 ((kW)		1		9	5	5	30 + 23	75 + 25	100 + 25	125 + 25	150 + 25	175 + 25	200 + 0
			2		18	15	15	5						
			3		27	23	23	9	5					
			4		36	34	34	15	8	5				
			5		45	44	44	19	11	7	5			
			6		54	57	57	23	15	9	6	5		
	1		7		63	68	68	28	18	12	8	6	5	
			8		72	80	80	34	20	15	11	8	6	5
			9		81	92	92	40	23	17	13	9	7	6
			10		90	103	103	44	26	19	15	11	9	7
			11		99	116	116	51	30	21	17	13	10	8
			12		108	129	129	57	34	23	18	15	12	9
			13		117	141	141	63	38	25	20	16	13	11
			14		126	151	151	68	41	28	22	18	15	12
			15		135	163	163	73	44	31	23	19	16	14
erías		rías	erias 16		144	177	177	80	48	34	25	20	17	15
e bat		bate	17	0	153	190	190	86	53	37	27	22	18	16
ios d		Número de series de baterías	9 18 18	nulad	162	206	206	92	57	40	29	23	19	17
Número de armarios de baterías	2	serie	19	Ah acumulado	171	221	221	98	61	42	32	25	21	18
de s		ro de	20	Ah	180	235	235	103	65	44	34	26	22	19
imerc		lúme	21		189	249	249	109	68	47	37	28	23	20
Ž		_	22		198	261	261	116	71	51	39	30	25	21
			23		207	272	272	123	75	54	41	32	26	22
			24		216	282	282	129	80	57	43	34	27	23
			25		225	294	294	135	84	60	44	36	29	24
			26		234	310	310	141	88	63	46	38	31	25
			27		243	326	326	146	92	66	49	40	33	26
			28		252	341	341	151	96	68	52	41	34	28
			29		261	354	354	156	99	71	55	43	36	30
			30		270	367	367	163	103	73	57	44	38	31
	3		31		279	383	383	170	107	76	59	46	39	33
			32		288	402	402	177	111	80	62	48	41	34
			33		297	419	419	183	116	83	64	51	42	36
			34		306	436	436	190	120	86	66	53	43	37
			35		315	451	451	197	125	89	68	55	44	39
			36		324	466	466	206	129	92	70	57	46	40

(1) Sin redundancia de la potencia

DIMENSIONES Y PE	DIMENSIONES Y PESO							
Número de series	0	1						
Alto (mm)	1990							
Fondo (mm)	890							
Ancho (mm)	8-	10						
Peso (kg)	220	1792						

Los armarios para baterías modulares de alta capacidad están diseñados para conseguir mayores tiempos de autonomía, PERO también con una mayor potencia.

Un sensor de temperatura de serie optimiza los parámetros de recarga de baterías según la temperatura ambiente de funcionamiento para ampliar la vida útil de la batería.

						AS MODU A EN MIN		AL 75 %	DE LA C	ARGA NO	DMINAL			
Núm	Número de módulos de potencia		1	2	3	4	5	6	7	8	3			
S		ia red Potenc			+1	25 + 0 ⁽¹⁾	25 + 25	50 + 25	75 + 25	100 + 25	125 + 25	150 + 25	175 + 25	200 + 0(1)
qe	1	baterías	1		92	119	119	56	33	21	15	-	-	-
	2	de bate	2	SO	184	279	279	119	75	56	45	33	25	21
de armarios baterías	3	series d	3	acumulados	276	447	447	201	119	84	66	56	49	41
o de bate	4	de ser	4		368	654	654	279	170	119	89	75	62	56
Número de bate	5		5	Ah	460	ı	-	378	226	154	119	92	81	70
Z	6	Número	6		552	-	-	-	279	201	146	119	96	84

⁽¹⁾ Sin redundancia de la potencia

2. ESPECIFICACIONES

2.1 PARÁMETROS DE INSTALACIÓN

DIMENSIONES Y PESO	DIMENSIONES Y PESO								
Número de módulos de potencia	1	2	3	4	5	6	7	8	
Alto (mm)					1990				
Fondo (mm)		890							
Ancho (mm)					600				
Peso (kg)	286	319	352	385	418	451	484	517	

CORRIENTE NOMINAL Y MA	ÁX.								
Número de módulos de potencia	1	2	3	4	5	6	7	8	
Sistema redundante N+1 Potencia (kW)	25 + O ⁽¹⁾	25 + 25	50 + 25	75 + 25	100 + 25	125 + 25	150 + 25	175 + 25	200 + 0 ⁽¹⁾
Corriente de entrada nominal del rectificador (A) (EN 62040-1)	38	75	113	151	189	226	264	30	02
Corriente máxima de entrada del rectificador (A) (EN 62040-3)	45	90	135	180	225	270	315	36	60
Corriente de salida nominal del inversor (A)	36	72	109	145	181	217	253	29	90
Corriente máxima de entrada de bypass (A) (EN 62040-3)					320				
Corriente de batería máx. (A)	80 160 240 320 400 480 560 640		40						

⁽¹⁾ Sin redundancia de la potencia

REFRIGERACIÓN											
Número de módulos de	potencia	1	2	3	4	5	6	7	3	3	
Sistema redundante N+1 Potencia (kW)		25 + O ⁽¹⁾	25 + 25	50 + 25	75 + 25	100 + 25	125 + 25	150 + 25	175 + 25	200 + 0(1)	
Caudal máximo de aire (m3/h)		400	800	1200	1600	2000	2400	2800	32	00	
Disipación de potencia	(VV)	1140	1140	2280	3420	4560	5700	6840	7980	9120	
en	(kcal/h)	980	980	1961	2941	3922	4902	5882	6863	7843	
condiciones nominales ⁽²⁾	(BTU/h)	3891	3891	7782	11 672	15 563	19 454	23 345	27 236	31 127	
Disipación de potencia	(VV)	1350	1350	2650	3950	5250	6550	7850	9150	10 450	
(máxima) en las peores	(kcal/h)	1161	1161	2279	3397	4515	5633	6751	7869	8987	
condiciones ⁽³⁾	(BTU/h)	4608	4608	9044	13 481	17 918	22 355	26 792	31 229	35 666	

⁽¹⁾ Sin redundancia de la potencia

⁽³⁾ Tensión de entrada baja, batería recargada y potencia activa nominal de salida (PF=1).

RUIDO ACÚSTICO									
Número de módulos de potencia	1	2	3	4	5	6	7	3	3
Sistema redundante N+1 Potencia (kW)	25 + O ⁽¹⁾	25 + 25	50 + 25	75 + 25	100 + 25	125 + 25	150 + 25	175 + 25	200 + 0(1)
Nivel acústico a 1 m (dBA)(2)	51	53	54	55	56	57	58	5	9

⁽¹⁾ Sin redundancia de la potencia

⁽²⁾ Tensión de entrada nominal y potencia activa nominal de salida (PF=1).

⁽²⁾ al 70 % de la carga nominal.

2.2 CARACTERÍSTICAS ELÉCTRICAS

2.2.1 CARACTERÍSTICAS ELÉCTRICAS INDEPENDIENTES DEL NÚMERO DE MÓDULOS

CARACTERÍSTICAS ELÉCTRICAS - ENTRADA	
Tensión nominal de la red de alimentación (V)	400 V 3F + N
Tolerancia de tensión a carga máxima	de 340 V a 480 V (+20/-15 %)
Tolerancia de tensión a carga con reducción de potencia	hasta 240 V al 50 % de la carga nominal (disminución lineal)
Frecuencia nominal (Hz)	40 – 70 Hz
Factor de potencia	> 0,99(1)
Distorsión de corriente armónica total de entrada (THDi)	≤ 3 % (@: Pn, Carga resistiva, THDv de red ≤ 1 %)
Corriente de irrupción máx. en encendido	Entrada de potencia / Arranque suave (parámetros seleccionables)

⁽¹⁾ Psal \geq 50 % de la potencia nominal.

CARACTERÍSTICAS ELÉCTRICAS - BYPASS								
Tensión nominal del bypass (V)	Tensión nominal de salida ±15 % (±20 % si se usa grupo electrógeno)							
Frecuencia nominal de bypass (Hz)	50/60							
Tolerancia de frecuencia del bypass	±2% seleccionable (±8 % si se usa grupo electrógeno)							
Velocidad de variación de frecuencia del bypass	50/60 ±10 %							

CARACTERÍSTICAS ELÉCTRICAS - INVERSOR									
Tensión nominal de salida (V)	(3F + N) 400 seleccionable 380/400/415								
Tolerancia de tensión de salida (V)	±1 %								
Frecuencia nominal de salida (Hz)	50/60 (seleccionable)								
Tolerancia en la frecuencia de salida	±0,05 % (en modo batería)								
Factor de cresta de la carga	≥ 2,7:1								
Distorsión total de la tensión de salida (THDv)	≤ 1 % (F/F); ≤ 2 % (Ph/N) (en Pn, carga resistiva)								

CARACTERÍSTICAS ELÉCTRICAS - MODO DE FUN	CIONAMIENTO CON ENERGÍA ALMACENADA
Número de bloques de batería (VRLA)	Desde 18+18 hasta 24+24 ⁽¹⁾

CARACTERÍSTICAS ELÉCTRICAS -EFICIENCIA						
Eficiencia (modo online)	Hasta 96,5 %					
Eficiencia (modo eco)	hasta 99,3 %					
	· ·					

⁽¹⁾ Consúltenos

CARACTERÍSTICAS ELÉCTRICAS - SOI	BRECARGA	Y CORTOCIRCUITO DEL BYPASS				
Número de módulos de potencia		1 → 8				
	Nominal	290				
	Continua	320				
Sobrecarga del bypass (A)	10'	362				
	1'	450				
	1"	510				
Corriente de cortocircuito de bypass máx. ITSM	(A)	9000				
Bypass I ² t (A ² s)		40 000				

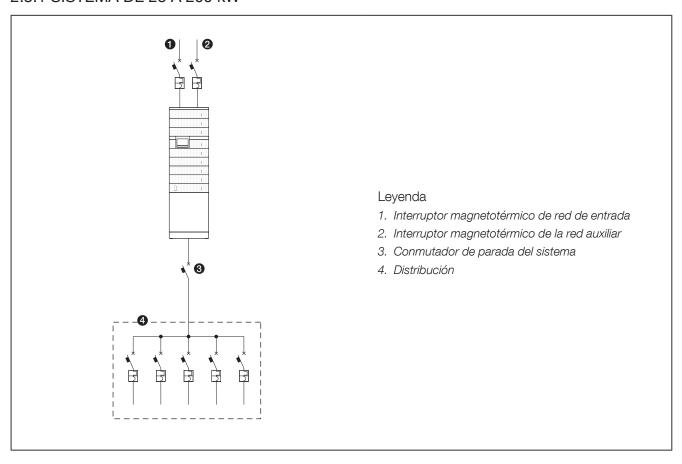
CARACTERÍSTICAS ELÉCTRICAS - RENDIMIENTO DE SEGURIDAD DEL SISTEMA FRENTE A CORTOCIRCUITOS									
Número de módulos de potencia	1 → 8								
Resistencia de la corriente de cortocircuito (lcw)	10 kA								
Corriente de cortocircuito condicional nominal (lcc)	50 kA								

2.2.2 CARACTERÍSTICAS ELÉCTRICAS DEPENDIENTES DEL NÚMERO DE MÓDULOS

CARACTERÍSTICAS ELÉCTRICAS - SOBRECARGA Y CORTOCIRCUITO DEL INVERSOR										
Número de módulos d	ero de módulos de potencia 1		2	3	4	5	6	7	3	3
Sistema redundante N Potencia (kW)	+1	25 + O ⁽¹⁾	25 + 25	50 + 25	75 + 25	100 + 25	125 + 25	150 + 25	175 + 25 200 + 0(1	
	10 min	31,2	62,4	94	125	157	188	219	250	
Sobrecarga del inversor (kW) ⁽²⁾	5 min	33,3	66,5	100	133	166	200	233	266	
	1 min	37,5	75,0	113	150	188	225	263	300	
Cortocircuito del inver-	40 ms	100	200	300	400	500	600	700	800	
sor (A) lk1 = lk2 = lk3	40 a 100 ms	80	160	240	320	400	480	560	64	40

⁽¹⁾ Sin redundancia de la potencia

⁽²⁾ Condiciones: Psal inicial ≤ 80 % Pn, Vin nominal


CARACTERÍSTICAS ELÉCTRICAS - MÁX. CORRIENTE DEL CARGADOR DE BATERÍAS										
Número de módulos de potencia	1	2	3	4	5	6	7	3	3	
Sistema redundante N+1 Potencia (kW)	25 + O ⁽¹⁾	25 + 25	50 + 25	75 + 25	100 + 25	125 + 25	150 + 25	175 + 25	200 + 0(1)	
Corriente estándar máxima (A)	8	16	24	32	40	48	56	64	64	
Máxima corriente de cargador de baterías ampliado (A)	16	32	48	64	80	96	112	128	128	

⁽¹⁾ Sin redundancia de la potencia

2.3 PROTECCIÓN RECOMENDADA

2.3.1 SISTEMA DE 25 A 200 kW

La instalación del sistema debe cumplir las normas nacionales relativas a plantas eléctricas.

El panel de distribución eléctrica debe disponer de un sistema de seccionamiento y protección en la entrada y la alimentación auxiliar.

CABLES DE SISTEMA - SECCIÓN MÁX.								
Número de módu	Número de módulos							
Bornes del rectificador (mm²)	Flexibles	2 x 150						
Borries der rectilicador (mm-)	Rígidos	2 x 150						
Bornes del bypass (mm²)	Flexibles	2 x 150						
bornes dei bypass (mm-)	Rígidos	2 x 150						
Bornes de la batería (mm²)	Flexibles	2 x 150						
Borries de la bateria (minis)	Rígidos	2 x 150						
Parnos de selido (mm²)	Flexibles	2 x 150						
Bornes de salida (mm²)	Rígidos	2 x 150						

Bornes M10

Par de apriete 20 Nm

La sección transversal máxima se determina según el tamaño de los bornes.

Como se especifica en EN 62040-3, Apéndice 3 (Referencia de carga no lineal), en el caso de cargas no lineales trifásicas conectadas aguas abajo al SAI, la corriente del neutro de la carga puede ser de 1,5 a 2 veces mayor que la corriente de fase. Es necesario tenerlo en cuenta para estimar el tamaño correcto de los cables de neutro de la salida y de la red auxiliar.

DISPOSITIVOS DE PROTECCIÓN RECOMENDADOS - Rectificador										
Número de m	Número de módulos 1 2 3 4 5 6 7				8	3				
Alimentación del sistema redundante N+1 (kW)		25 + O ⁽¹⁾	25 + 25	50 + 25	75 + 25	100 + 25	125 + 25	150 + 25	175 + 25	200 + 0(1)
Interruptor automático con lm ≤			100	160	200	250	320	400	40	00
10 x ln (A)	Máxima	400	400	400	400	400	400	400	40	00

(1) Sin redundancia de la potencia

Interruptor automático recomendado con umbral de intervención magnética ≥10 ln.

Es necesario utilizar un interruptor automático con un disyuntor selectivo con Im ≤ 20 x In (A), si se utiliza un transformador externo opcional. El valor mínimo depende del tamaño de los cables de alimentación en la instalación, mientras que el valor máximo está limitado por el armario del SAI.

El sistema puede aceptar el valor máximo de protección, sea cual sea el número de módulos instalados, para permitir la escalabilidad en el futuro, mientras que el valor mínimo depende del tamaño de los cables de alimentación de la instalación. Se utilizará un valor de protección inferior al máximo cuando la estructura de la red eléctrica no pueda soportar la potencia a carga completa, a elegir entre los valores mínimo y máximo (según la tabla anterior) de acuerdo con el diseño de la red eléctrica.

Debe tenerse en cuenta la protección del rectificador en caso de entradas separadas; cuando se combinan las entradas de red auxiliar y del rectificador (entrada común), el grado de protección de entrada general debe ser superior al de ambas (red auxiliar o rectificador).

DISPOSITIVOS DE PROTECCIÓN RECOMENDADOS - Red auxiliar										
Número de mo	ódulos	1	2	3	4	5	6	7	3	3
Alimentación del sistema redundante N+1 (kW)		25 + O ⁽¹⁾	25 + 25	50 + 25	75 + 25	100 + 25	125 + 25	150 + 25	175 + 25	200 + 0(1)
Interruptor automático Mínima		50	100	160	200	250	320	400	40	00
$con lm \le 10 x ln (A)$	Máxima	400	400	400	400	400	400	400	40	00

(1) Sin redundancia de la potencia

Interruptor automático recomendado con umbral de intervención magnética ≥10 ln.

Es necesario utilizar un interruptor automático con un disyuntor selectivo con $Im \le 20 \times In$ (A), si se utiliza un transformador externo opcional. El valor mínimo depende del tamaño de los cables de alimentación en la instalación, mientras que el valor máximo está limitado por el armario del SAI.

La corriente condicional de cortocircuito (Icc), según IEC 62040-1, es de 65 kA rms, siempre que el SAI esté protegido por un MCCB con capacidad de ruptura y capacidad de limitación de corriente adecuadas en condiciones de cortocircuito. Para información más detallada, póngase en contacto con nosotros.

DISPOSITIVOS DE PROTECCIÓN RECOMENDADOS: interruptor automático de corriente residual aguas arriba										
Número de módu	ulos	1	2	3	4	5	6	7	3	3
Alimentación del sistema redundante N+1 (kW)		25 + O ⁽¹⁾	25 + 25	50 + 25	75 + 25	100 + 25	125 + 25	150 + 25	175 + 25	200 + 0(1)
Detección de corriente residual (A).	Mínima					0,5				

(1) Sin redundancia de la potencia

No es necesario un detector de corriente residual (RCD) cuando el SAI se instala en un sistema TN-S. No se permiten RCD en sistemas TN-C. Si se necesita RCD, debe utilizarse uno tipo B.

¡Precaución! Utilice detectores de corriente residual (RCD) de cuatro polos de tipo B (S). Las corrientes de fuga de las cargas se deben sumar a las del SAI y en las fases transitorias se pueden producir picos de corriente de duración breve (fallos y retornos de la alimentación de red). Cuando existan cargas con elevadas corrientes de fuga, deberá adecuar la protección de corriente residual. En todos los casos se recomienda llevar a cabo una comprobación previa de la fuga de corriente a tierra con el SAI instalado y funcionando con la carga definitiva para evitar disparos del interruptor RCD.

SELECTIVIDAD DE SALIDA EN MODO DE BATERÍA (RED AUX. NO PRESENTE)										
Número de mód	ulos 1 2 3 4 5 6 7 8				3					
Alimentación del sistema redundante N+1 (kW)		25 + O ⁽¹⁾	25 + 25	50 + 25	75 + 25	100 + 25	125 + 25	150 + 25	175 + 25	200 + 0(1)
Interruptor automático con lm ≤ 5 x ln (A)	Máxima	13	25	40	50	63	80	100	100	
Interruptor automático con lm ≤ 10 x ln (A)	Máxima	6	13	20	25	32	40	50	50	

3. ESTÁNDARES Y DIRECTIVAS DE REFERENCIA

3.1 PRESENTACIÓN GENERAL

La construcción del equipo y la selección de materiales y componentes cumplen todas las leyes, decretos, directivas y estándares vigentes. En concreto, el equipo cumple todas las directivas europeas conforme con el marcado CE.

2014/35/UE

Directiva 2014/35/UE del Parlamento Europeo y del Consejo, de 26 de febrero de 2014, sobre la armonización de las legislaciones de los Estados miembros en materia de comercialización de material eléctrico destinado a utilizarse con determinados límites de tensión.

2014/30/UE

DIRECTIVA 2014/30/UE del Parlamento y del Consejo, de 26 de febrero de 2014, sobre la armonización de las legislaciones de los Estados miembros en materia de compatibilidad electromagnética.

2011/65/UE

Directiva 2011/65/UE del Parlamento Europeo y del Consejo, del 8 de junio de 2011, sobre restricciones a la utilización de determinadas sustancias peligrosas en aparatos eléctricos y electrónicos.

3.2 ESTÁNDARES

ESTÁNDAR	
Seguridad	EN/IEC 62040-1 - AS 62040-1
CEM	EN/IEC 62040-2 - AS 62040-2
Certificación del producto	Esquema IECEE CB
Rendimiento	EN/IEC 62040-3 - AS 62040-3
Marcados del producto	CE - RCM ⁽¹⁾ - EAC ⁽¹⁾ - CMIM ⁽¹⁾ - UKCA ⁽¹⁾
Clase de protección	Clase de protección I
Nivel de protección	IP20

(1) Depende del lugar de producción. Consultar la placa de datos del equipo.

SAI ELITE: marca de eficiencia

Socomec, en calidad de miembro fabricante de sistemas de alimentación ininterrumpida (SAI) del CEMEP, ha firmado un Código de Conducta presentado por el Centro Común de Investigación de la Comisión Europea (JRC) para garantizar la protección de aplicaciones y procesos críticos y asegurar un suministro continuo ininterrumpido de alta calidad. El JRC se compromete a mitigar las pérdidas de energía y las emisiones de gases producidas por los equipos SAI maximizando su eficiencia.

