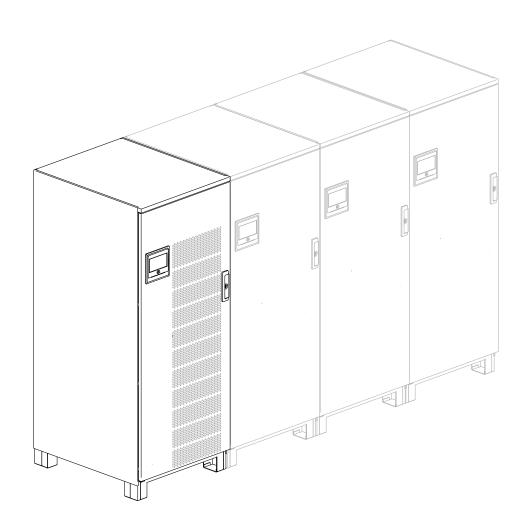


MODULYS XM

Unidad modular de 50 a 500 kW para arquitecturas paralelas de hasta 2,0 MW



OBJETIVOS

El objetivo de estas especificaciones técnicas es ofrecer toda la información necesaria para preparar el sistema y el lugar de instalación.

Las especificaciones están dirigidas a:

- Instaladores
- Proyectistas
- Estudios técnicos

Para obtener información detallada, consulte el manual de instalación y funcionamiento.

1. ARQUITECTURA

1.1 GAMA Y FLEXIBILIDAD

Modulys XM es un sistema SAI modular, escalable y redundante basado en módulos de potencia enchufables e intercambiables en caliente.

La modularidad de su diseño permite escalar la potencia simplemente añadiendo uno o más módulos a la unidad existente (hasta seis módulos por unidad).

Esta modularidad también permite la redundancia, una característica esencial para garantizar la tolerancia a fallos del sistema SAI. Las configuraciones redundantes de los módulos de potencia se pueden establecer entre N+1 y N+R.

Las unidades Modulys XM se pueden conectar en paralelo (un máximo de cuatro) para aumentar la capacidad de potencia total y poder cumplir los requisitos más exigentes en cuanto a potencia y aumentar la flexibilidad del sistema.

Modulys XM es muy flexible; su flexibilidad le permite sacar el máximo partido a su arquitectura en paralelo. De este modo, puede ofrecer una versatilidad excepcional e incluir todos los aspectos de las arquitecturas, configuraciones y diseños paralelos.

1.1.1 LOS MÓDULOS

Modulys XM se basa en un concepto de módulos flexibles. El SAI se consigue asociando los módulos de acuerdo a los requisitos.

PANEL SINÓPTICO		
Potencia máxima de cada unidad (kW)	500	
Paralelabilidad	Preparado para configuración paralela con hasta 4 unidades	
Alto (mm)	1990	
Ancho (mm)	800	
Fondo (mm)	950	
Peso (sin módulos)	400	
Cableado	Parte superior	
Acceso para la instalación o cableado, accionamiento y mantenimiento	Acceso frontal, para todas las piezas que conforman la unidad: el acceso trasero y lateral no son nunca necesarios	
Sistema de puesta a tierra	Flexibilidad para trabajar en cualquier sistema de puesta a tierra: TN-C - TN-S - IT - TT	
Mantenimiento	Mantenimiento rápido y seguro por piezas (módulos de potencia, bypass estático, placas electrónicas, panel sinóptico). Todas se pueden intercambiar en caliente en el modo inversor (modo de doble conversión) sin necesidad de pasar al modo bypass de mantenimiento o bypass estático	
	Armario sin componentes electrónicos: todos los componentes electrónicos están conectados (sin estar fijos a la caja de la unidad) y se pueden intercambiar en caliente	
Número de módulos de potencia	2 → 10	
Tamaño del módulo de potencia (kW)	50	
Número de módulos de bypass estático	1	
Tamaño del módulo de bypass (kW)	500	

MÓDULOS DE POTEN	CIA	
Potencia (kW)	50	
Arquitectura y	Doble conversión	
fiabilidad	Totalmente independiente: rectificador, inversor, cargador de baterías, control interno, control de configuración interna	
	Separación de las fases de entrada y salida para un ais- lamiento completo de los componentes electrónicos: separación galvánica aguas arriba y aguas abajo in- tegrada y fusibles rápidos	
	Desconexión selectiva: cualquier fallo se aísla dentro del módulo de potencia afectado, sin perjuicio para el resto de módulos	
	Conectores de alto rendimiento > 500 ciclos de aco- plamiento (certificado)	
	Tiempo medio operativo entre fallos > 1 000 000 h (certificado)	
Incorporación de módu- los intercambiables en caliente para mayor	Intercambiables y enchufables en caliente (EN 62040-1 y EN 50110-1) y completamente automáticos (certificado)	
escalabilidad	Autoconfiguración y prueba del módulo de potencia automáticas (certificado)	
	Alineación automática de firmware sin intervención del operario (certificado)	
	Tiempo medio de recuperación < 2 min	
Paralelabilidad	Módulos de potencia totalmente independientes con control paralelo distribuido (sin punto único de fallo: control no centralizado)	
Peso (kg)	36	
Cableado	Conectable y desconectable	

OPCIONES / EXTENSIONES	
Kit de conexión para sistema de puesta a tierra TN-C	Preparado para instalación in situ
Kit de conexión de alimentación de red/auxiliar para alimentación común	Preparado para instalación in situ
Panel sinóptico de gestión remota	Preparado para instalación in situ
Tarjeta de relés programable con 3 entradas y 4 salidas + conexión en serie RS485 aislada	Preparado para instalación in situ
Interfaz web/SNMP de la tarjeta Net Vision y BACnet	Preparado para instalación in situ
Sensor de temperatura y humedad ambiental con dos entradas	Preparado para instalación in situ
Sensor de temperatura de la batería externo	Preparado para instalación in situ
Kit de arranque en frío	Preparado para instalación in situ
Tarjeta de sincronización cruzada automática	Preparado para instalación in situ (*)
Kit sísmico	(*)

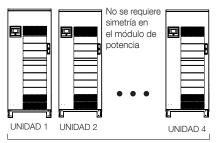
(*) Consúltenos

1.1.2 POTENCIA NOMINAL FLEXIBLE

POTENCIA MÁXIMA DE LOS SISTEMAS PARALELOS				
Número de unidades	1	2	3	4
Configuración sin redundancia (kW) (1)	500	1000	1.500	2000
Configuración de módulo de potencia redundante N+1 (kW) (2)	450+50	950+50	1450+50	1950+50
Configuración de una unidad redundante (kW)	/	500+500	1000+500	1500+500
Configuración 1+1 (kW)	/	500+500	/	/
Configuración independiente (kW) (3)	500 450+50 ⁽⁴⁾	/	/	/

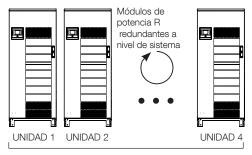
⁽¹⁾ No se recomienda configurar el sistema sin redundancia para una configuración modular con una alta fiabilidad, a menos que la redundancia se encuentre a nivel de la infraestructura (2N, 3N2, Catcher, etc.).

- (3) Se puede realizar una configuración independiente, lo que permite el accionamiento con una única unidad al tiempo que se mantiene la flexibilidad para poder incorporar unidades adicionales en el futuro.
- (4) Se recomienda que la configuración independiente incluya redundancia interna.


1.1.3 ARQUITECTURA FLEXIBLE

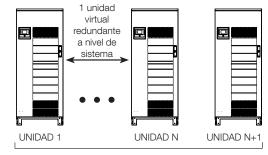
Distribución flexible de módulos de potencia:

- No se requiere simetría entre las unidades.
- Las unidades pueden contener cantidades distintas de módulos de potencia.
- No es necesario que las unidades cuenten con la misma capacidad de potencia.


Escalabilidad sin igual:

- Se puede añadir un módulo de potencia en cualquier ranura del sistema, independientemente de la unidad en la que se encuentre.
- No existen requisitos para añadir un módulo de potencia a cada unidad para mantener la misma capacidad de potencia; no es necesario que haya simetría.

SINÓPTICO


Gestión flexible de la redundancia

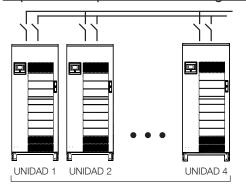
SISTEMA CON REDUNDANCIA DISTRIBUIDA DE LOS MÓDULOS DE POTENCIA

Redundancia de los módulos de potencia:

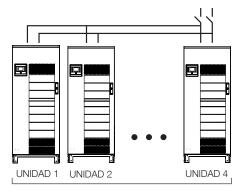
R módulos redundantes virtuales (R = 1, 2, 3, ...) distribuidos por todo el sistema, lo que hace que ya no sea necesario que todos los módulos de potencia tengan la misma redundancia en cada unidad individual.

SISTEMA CON REDUNDANCIA DISTRIBUIDA DE LA UNIDAD

Redundancia de la unidad:

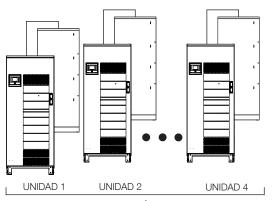

Se designa una única unidad redundante virtual para todo el sistema; todos los módulos redundantes se alojan virtualmente en esta unidad, aunque, físicamente, siguen estando distribuidos por todo el sistema.

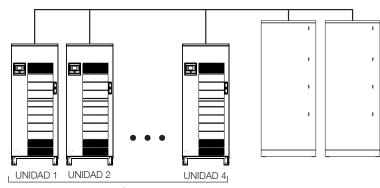
La redundancia distribuida de manera global por todo el sistema permite evitar la duplicación innecesaria de los componentes del sistema. De este modo, se consigue una arquitectura, redundancia, escalabilidad y mantenimiento económicos.



⁽²⁾ La redundancia del módulo de potencia se puede configurar, por lo general, como N+R.

Arquitectura de protección flexible aguas arriba

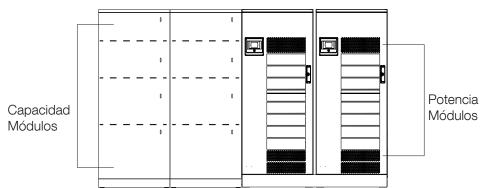



SISTEMA CON ARQUITECTURA DISTRIBUIDA AGUAS ARRIBA

SISTEMA CON ARQUITECTURA COMÚN AGUAS ARRIBA

Arquitectura de baterías flexible

SISTEMA CON BATERÍAS DISTRIBUIDAS


SISTEMA CON BATERÍAS COMPARTIDAS

1.1.4 COMPATIBILIDAD DE PUESTA A TIERRA FLEXIBLE

Compatible con cualquier sistema de puesta a tierra: TN-S, TN-C, IT y TT.

1.2 TIEMPO DE AUTONOMÍA FLEXIBLE

1.2.1 ARMARIO PARA BATERÍAS MODULAR - ALTA CAPACIDAD

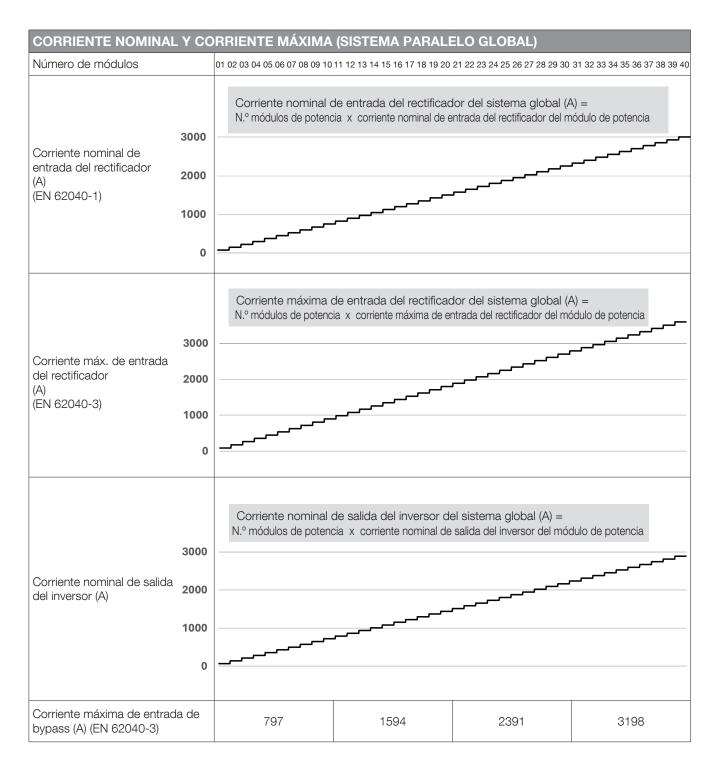
DIMENSIONES Y PESO		
Número de series 0 1		1
Alto (mm)	1990	
Fondo (mm)	890	
Ancho (mm)	810	
Peso (kg)	220 1792	

Los armarios para baterías modulares de alta capacidad están diseñados para conseguir mayores tiempos de autonomía, PERO también con una mayor potencia.

Un sensor de temperatura de serie optimiza los parámetros de recarga de baterías según la temperatura ambiente de funcionamiento para ampliar la vida útil de la batería.

1.2.2 ARMARIO MODULAR DE BATERÍAS DE LITIO

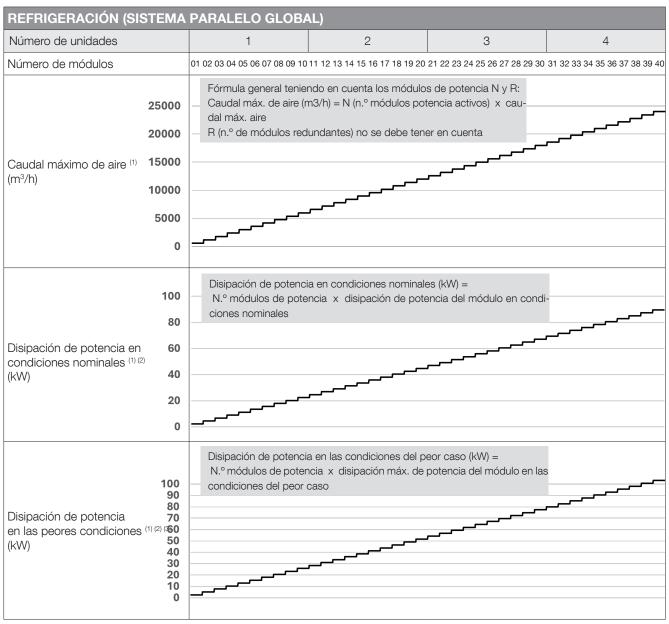
Consúltenos.


2. ESPECIFICACIONES

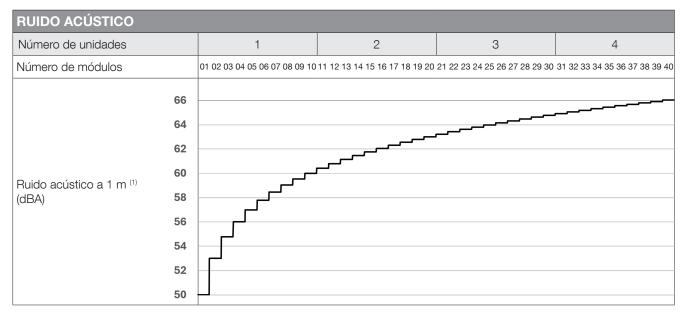
2.1 PARÁMETROS DE INSTALACIÓN

DIMENSIONES Y PESO DEL SISTEMA PARALELO GLOBAL					
Número de unidades		1	2	3	4
Ancho (mm)		800	1600	2400	3200
Alto (mm)		1990			
Fondo (mm)		950			
Número de módulos		01 02 03 04 05 06 07 08 09 10	11 12 13 14 15 16 17 18 19 20	21 22 23 24 25 26 27 28 29 30	31 32 33 34 35 36 37 38 39 40
Peso (kg)	3000 2500 2000 1500 1000 500	Peso global del sist N.º unidades x pe	ema = so unidad vacía + n.º n	nódulos de potencia x	peso del módulo
Peso de unidad vacía individual (kg) 400					
Peso de módulo de poten	icia individual (kg)	36			

CORRIENTE NOMINAL Y CORRIENTE MÁXIMA (MÓDULINDIVIDUAL)	O DE POTENCIA
Corriente nominal de entrada del rectificador (EN 62040-1) (A)	75
Corriente máxima de entrada del rectificador (EN 62040-3) (A)	90
Corriente de salida nominal del inversor (A)	72
Corriente de batería máx. (A)	114



REFRIGERACIÓN (MÓDULO DE POTENCIA INDIVIDUAL)		
Caudal máximo de aire	(m3/h)	600
	(VV)	2240
Disipación de potencia en condiciones nominales (1)	(kcal/h)	1920
	(BTU/h)	7640
	(VV)	2580
Disipación de potencia (máx.) en las peores condiciones (2)	(kcal/h)	2220
	(BTU/h)	8810


⁽¹⁾ En el peor caso: R (n.º de módulos redundantes) = 0

⁽²⁾ Tensión de entrada nominal y potencia activa nominal de salida (FP=1).

- (1) En el peor caso: R (n.º de módulos redundantes) = 0
- (2) Tensión de entrada nominal y potencia activa nominal de salida (FP=1).
- (3) Tensión de entrada baja, recarga de baterías y potencia activa nominal de salida (FP=1).

(1) Al 70 % de la carga nominal.

2.2 ESPECIFICACIONES ELÉCTRICAS

2.2.1 CARACTERÍSTICAS ELÉCTRICAS INDEPENDIENTES DEL NÚMERO DE MÓDULOS Y UNIDADES

CARACTERÍSTICAS ELÉCTRICAS - ENTRADA	
Tensión nominal de la red de alimentación (V)	400 V 3F + N
Tolerancia de tensión a carga máxima	340 V a 480 V (+20 / -15 %)
Tolerancia de tensión a carga con reducción de potencia	hasta 240 V al 50 % de la carga nominal (disminución lineal)
Frecuencia nominal (Hz)	40 – 70 Hz
Factor de potencia	> 0,99 (1)
Distorsión de corriente armónica total de entrada (THDi)	≤ 3 % (@: Pn, Carga resistiva, THDv de red ≤ 1 %)
Corriente de irrupción máx. en encendido	Entrada de potencia / Arranque suave (parámetros seleccionables)

⁽¹⁾ Psal ≥ 50 % de la potencia nominal.

CARACTERÍSTICAS ELÉCTRICAS - BYPASS	
Tensión nominal del bypass (V)	Tensión nominal de salida ±15 % (±20 % si se usa grupo electrógeno)
Frecuencia nominal de bypass (Hz)	50/60
Tolerancia de frecuencia del bypass	±2% seleccionable (±8 % si se usa grupo electrógeno)
Velocidad de variación de frecuencia del bypass	50/60 ±10 %

CARACTERÍSTICAS ELÉCTRICAS - INVERSOR	
Tensión nominal de salida (V)	(3F + N) 400 seleccionable 380/400/415
Tolerancia de tensión de salida (V)	±1 %
Frecuencia nominal de salida (Hz)	50/60 (seleccionable)
Tolerancia en la frecuencia de salida	±0,05 % (en modo batería)
Factor de cresta de la carga	≥ 2,7:1
Distorsión total de la tensión de salida (THDv)	≤ 1 % (F/F); ≤ 2 % (Ph/N) (en Pn, carga resistiva)

CARACTERÍSTICAS ELÉCTRICAS - MODO DE FUNCIONAMIENTO CON ENERGÍA ALMACENADA		
Número de bloques de batería (VRLA)	De 18+18 a 24+24 (1)	

(1) Consúltenos

CARACTERÍSTICAS ELÉCTRICAS -EFICIENCIA	
Eficiencia (modo online)	hasta 96,5 %
Eficiencia (modo eco)	hasta 99,3 %

CARACTERÍSTICAS ELÉCTRICAS - RENDIMIENTO CON SOBRECARGA Y CORTOCIRCUITO DEL BYPASS					
Número de unidades	1	2	3	4	
Número de módulos de potencia	2 → 10	11 → 20	21 → 30	31 → 40	
Nominal		725	1449	2174	2899
	Continua	797	1594	2391	3188
Sobrecarga del bypass (A)	10'	906	1812	2717	3623
	1'	1087	2174	3261	4348
1'		1268	2536	3804	5072
Corriente de cortocircuito de bypass máx. I _{TSM} (A _{pk}) (1) 20 ms		21 000	34 000	50 000	67 000
Bypass I ² t (A ² s) (1)	2 200 000	5 600 000	12 700 000	22 600 000	

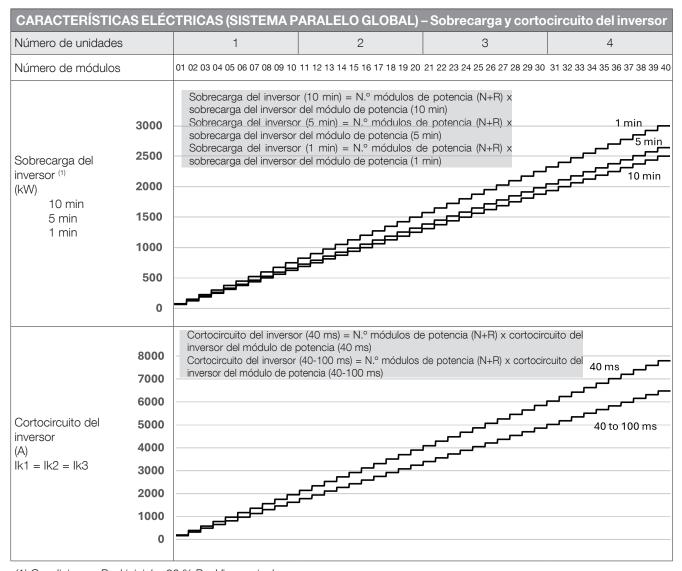
CARACTERÍSTICAS ELÉCTRICAS - FRENTE A CORTOCIRCUITOS	RENDIMIENTO DE SEGURIDAD DE UNA UNI	DAD INDIVIDUAL
Número de módulos de potencia		1 → 10
Corriente de cortocircuito condicional nomina	100 kA	
Resistencia de la corriente de cortocircuito	Alta capacidad de cortocircuito (unidad estándar) (5) (7)	35 kA
Icw (A _{RMS}) (4)	Ultraalta capacidad de cortocircuito (unidad opcional) (6) (7)	65 kA

⁽¹⁾ $Ta = 25 \, ^{\circ}C$.

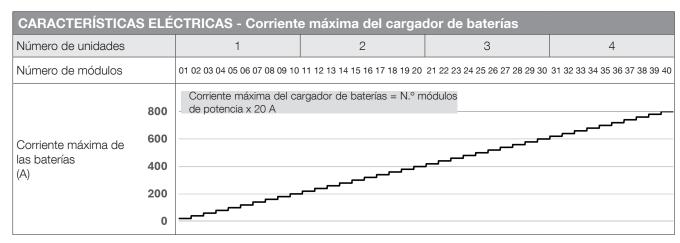
⁽²⁾ Resistencia de seguridad frente a cortocircuito Icw (requisito IEC/EN 62040-1 sin protección aguas arriba).

⁽³⁾ Con unidad estándar (alta capacidad de cortocircuito lcw = 35 kW) y cada unidad con protección aguas arriba definida (consúltenos).

⁽⁴⁾ Resistencia de seguridad frente a cortocircuito lcc (requisito IEC/EN 62040-1 con protección aguas arriba).

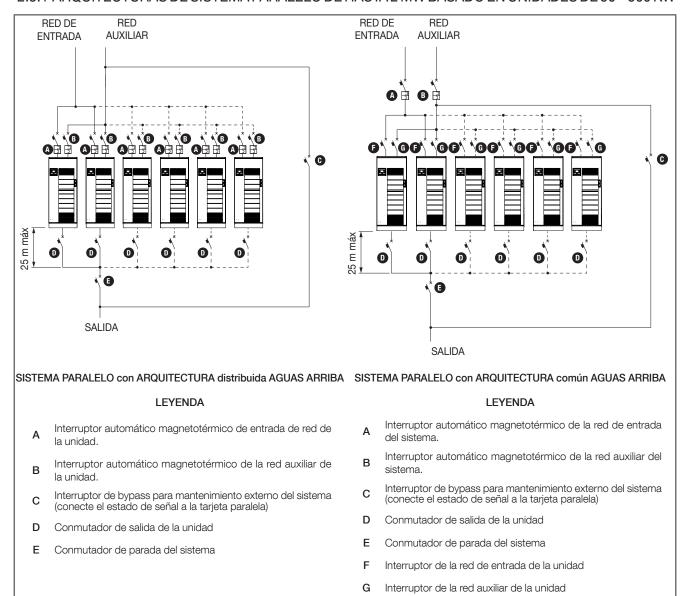

⁽⁵⁾ Unidad estándar lcw = 35 kA para una mayor resistencia de seguridad frente a cortocircuito (superior a requisitos IEC/EN 62040-1: lcw = 17 kA).

⁽⁶⁾ Unidad muy resistente lcw = 65 kA para una mayor resistencia de seguridad frente a cortocircuito (superior a requisitos IEC/EN 62040-1: lcw = 17 kA).


⁽⁷⁾ Certificado por parte de terceros.

2.2.2 CARACTERÍSTICAS ELÉCTRICAS DEPENDIENTES DEL NÚMERO DE MÓDULOS Y UNIDADES

CARACTERÍSTICAS ELÉCTRICAS (MÓDULO DE POTENCIA INDIVIDUAL) – Sobrecarga y cortocircuito del inversor					
	10 min	62.5			
Sobrecarga del inversor (1) (kW)	5 min	66			
	1 min	75			
Cortocircuito del inversor (A)	40 ms	195			
lk1 = lk2 = lk3	40 a 100 ms	162			


(1) Condiciones: Psal inicial \leq 80 % Pn, Vin nominal

2.3 PROTECCIÓN RECOMENDADA

2.3.1 ARQUITECTURAS DE SISTEMA PARALELO DE HASTA 2 MW BASADO EN UNIDADES DE 50→500 KW

La instalación del sistema debe cumplir las normas nacionales relativas a plantas eléctricas.

El panel de distribución eléctrica debe disponer de un sistema de seccionamiento y protección en la entrada y la alimentación auxiliar.

CABLE UNIDAD INDIVIDUAL - SECCIÓN MÁXIMA				
D2)	Flexibles	3 x 240		
Bornes del rectificador (mm²)	Rígidos	3 x 240		
Bornes del bypass (mm²)	Flexibles	3 x 240		
	Rígidos	3 x 240		
Bornes de la batería (mm²)	Flexibles	3 x 240		
Bornes de la bateria (mm²)	Rígidos	3 x 240		
Dornas de salida (mm²)	Flexibles	3 x 240		
Bornes de salida (mm²)	Rígidos	3 x 240		

Bornes M10 Par de apriete 20 Nm

La sección transversal máxima se determina según el tamaño de los bornes.

Como se especifica en EN 62040-3, Apéndice 3 (Referencia de carga no lineal), en el caso de cargas no lineales trifásicas conectadas aguas abajo al SAI, la corriente del neutro de la carga puede ser de 1,5 a 2 veces mayor que la corriente de fase. Es necesario tenerlo en cuenta para estimar el tamaño correcto de los cables de neutro de la salida y de la red auxiliar. La unidad está diseñada para conexiones por la parte inferior. Para una conexión por la parte superior, hay disponible una opción específica.

DISPOSITIVOS DE PROTECCIÓN RECOMENDADOS - Alimentación de red						
Arquitectura (una protecc		Protecciones distribuidas (una protección del rectificador por cada unidad)	Protecciones comunes (una protección del rectificador para todas las unidades)			
Número de unidades		1 → 4	1	2	3	4
Mínima			En el caso de una arquitectura de protección común, la se- lección del tamaño del sistema de protección aguas arriba debe tener en consideración la corriente nominal y máxima			
Interruptor automático (A)	Máxima	1000	del rectificado de los cables	r del sistema p de conexión s	la corriente non paralelo (§ 2.1) según su tamai res y normativas	la protección no (§ 2.3) y el

Se recomienda un interruptor automático con umbral de intervención magnética ≥10 ln.

Cuando se utiliza un transformador externo opcional, es necesario disponer de un interruptor automático con $Im \le 20$ x In (A) y capacidad selectiva de ruptura.

El valor mínimo depende del tamaño de los cables de alimentación de la instalación, mientras que el valor máximo está restringido por el armario del SAI.

El sistema puede adoptar el máximo tamaño de protección, independientemente del número de módulos instalados, para permitir una futura escalabilidad.

Debe utilizarse un valor de protección inferior al máximo cuando la estructura de la red de alimentación o los cables no soportan la potencia a carga completa. Este valor debe elegirse consecuentemente.

Cuando la alimentación auxiliar y la entrada se conectan juntas, el grado general de protección de entrada debe ser superior al de la alimentación auxiliar o al del rectificador.

DISPOSITIVOS DE PROTECCIÓN RECOMENDADOS - Alimentación auxiliar						
Arquitectura		Protecciones distribuidas (una protección del rectificador por cada unidad)	Protecciones comunes (una protección del rectificador para todas las unidades)			ctificador para
Número de unidades		1 → 4	1	2	3	4
Mínima			En el caso de una arquitectura de protección común, la se- lección del tamaño del sistema de protección aguas arriba debe tener en consideración la corriente nominal y máxima			
Interruptor automático (A)	Máxima	800	del rectificado de los cables	r del sistema p de conexión s	paralelo (§ 2.1)	, la protección ño (§ 2.3) y el

Se recomienda un interruptor automático con umbral de intervención magnética ≥10 ln.

Si se utiliza un transformador externo opcional, es obligatorio disponer de un interruptor automático con $Im \le 20 \times In$ (A) y prestaciones de un disyuntor selectivo.

El valor mínimo depende del tamaño de los cables de alimentación en la instalación, mientras que el valor máximo está limitado por el armario del SAI.

La corriente condicional de cortocircuito (Icc) de conformidad con IEC 62040-1 es de 65 kA rms (§ 2.2.1), siempre que el SAI esté protegido por un MCCB con capacidad de ruptura y capacidad de limitación de corriente adecuadas en condiciones de cortocircuito.

Para obtener más información, póngase en contacto con nosotros.

DISPOSITIVOS DE PROTECCIÓN RECOMENDADOS - Interruptor automático de detección de corriente residual aguas arriba						
Arquitectura		Protecciones distribuidas (una protección para el rectificador y la aliment- ación auxiliar por cada unidad)	Protecciones comunes (una protección para el rectificador y la aliment- ación auxiliar para el sistema paralelo global)			
Número de unidades		1 → 4	1	2	3	4
Entrada diferencial (A)	Mínima	No se pueden utilizar dispositivos RCD en sistemas paralelos con protecciones distribuidas	0,5 A ⁽¹⁾			

(1) No se recomienda utilizar dispositivos RCD como protección común aguas arriba en un sistema paralelo.

No se necesitan dispositivos RCD cuando el SAI se instala en un sistema TN-S.

No está permitido utilizar dispositivos RCD en sistemas TN-C.

TGP_MODULYS-XM_500F87_ES_V02 Documento no contractual. © 2025, SOCOMEC SA. Todos los derechos reservados

3. ESTÁNDARES Y DIRECTIVAS DE REFERENCIA

3.1 PRESENTACIÓN GENERAL

REFERENCIA	TÍTULO
2014/35/UE	Directiva del Parlamento Europeo y del Consejo del 26 de febrero de 2014, sobre la armonización legislativa de los estados miembros con relación a la disponibilidad comercial de equipos eléctricos que estén diseñados para su uso con determinados límites de tensión.
2014/30/UE	Directiva del Parlamento Europeo y del Consejo del 26 de febrero de 2014, sobre la armonización legislativa de los estados miembros con relación a compatibilidad electromagnética.
2011/65/UE	Directiva del Parlamento Europeo y del Consejo del 8 de junio de 2011, sobre restricciones a la utilización de determinadas sustancias peligrosas en aparatos eléctricos.

3.2 NORMATIVAS

ESTÁNDAR	
Seguridad	EN/IEC 62040-1 - AS 62040-1
CEM	EN/IEC 62040-2 - AS 62040-2
Certificación del producto	Esquema IECEE CB
Rendimiento	EN/IEC 62040-3 - AS 62040-3
Marcados del producto	CE - RCM ⁽¹⁾ - CMIM ⁽¹⁾ - UKCA ⁽¹⁾
Clase de protección	Clase de protección I
Nivel de protección	IP20

⁽¹⁾ Depende del lugar de producción. Consultar la placa de datos del equipo.

SAI ELITE: marca de eficiencia

Socomec, en calidad de miembro fabricante de sistemas de alimentación ininterrumpida (SAI) del CEMEP, ha firmado un Código de Conducta presentado por el Centro Común de Investigación de la Comisión Europea (JRC) para garantizar la protección de aplicaciones y procesos críticos y asegurar un suministro continuo ininterrumpido de alta calidad. El JRC se compromete a mitigar las pérdidas de energía y las emisiones de gases producidas por los equipos SAI maximizando su eficiencia.

